Discrete Maximum Principle for the Weak Galerkin Method for Anisotropic Diffusion Problems
نویسندگان
چکیده
منابع مشابه
Accepted Manuscript a Constrained Finite Element Method Satisfying the Discrete Maximum Principle for Anisotropic Diffusion Problems
Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-d...
متن کاملA constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems
Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-d...
متن کاملThe discrete maximum principle for Galerkin solutions of elliptic problems
This paper provides equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-di...
متن کاملMesh Adaptation and Discrete Maximum Principle for 2D Anisotropic Diffusion Problems
Finite element method is widely used to solve diffusion problems. For anisotropic problem, the numerical solution may violate the discrete maximum principle (DMP) even if the triangular mesh satisfies acute type condition. We derive the conditions for a triangular mesh such that the obtained solution satisfies DMP. We also develop the strategy to adapt a given mesh so that the solution is impro...
متن کاملHigher-order Discrete Maximum Principle for 1d Diffusion-reaction Problems
Sufficient conditions for the validity of the discrete maximum principle (DMP) for a 1D diffusion-reaction problem −u + κu = f with the homogeneous Dirichlet boundary conditions discretized by the higher-order finite element method are presented. It is proved that the DMP is satisfied if the lengths h of all elements are shorter then one-third of the length of the entire domain and if κh is sma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Computational Physics
سال: 2015
ISSN: 1815-2406,1991-7120
DOI: 10.4208/cicp.180914.121214a